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Abstract 

The secondary stage creep deformations and creep stress in a thick walled spherical vessels made of functionally 

graded composites has been obtained in the present study. The spherical pressure vessel chosen for the investigation 

is subjected to internal and external pressure under constant temperature field. The material of the vessel is 

incompressible and volume constancy condition was assumed. The creep behaviour of material is governed by 

threshold stress based creep law. The study reveals that for linear variation of reinforcement and assumed pressure 

ratio the compressive value of radial stress reduces with increase in pressure ratio from 2 to 5 over entire radial 

distance. However, the longitudinal stress remains compressive at inner radius, however, the value become tensile 

for pressure ratio 3, 4 and 5. 
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1. Introduction 

The use of functionally graded materials for applications such as spherical pressure vessels subjected to high pressure 

and temperature is an important area of investigation (Sultana and Mondal, 2012). It is seen that many application 

involving spherical pressure vessels are subjected to high temperatures for long duration and therefore material of 

the vessel undergoes creep stresses and thereby reducing its service life. Most of the components used under high 

pressure and temperature are designed for minimum strain rate in the secondary stage creep during their lifetime. 

Therefore, study of secondary stage creep is very important from structural design point of view. In applications like 

power plants and petrochemical industry the spherical vessels are also subjected to a radial thermal gradient of the 
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order of 50°C along with pressure (Johnson and Khan, 1963; Sim, 1973; Durban and Baruch, 1974). Therefore, it 

requires a different analysis as compared to the vessels exposed to constant temperature conditions.  

The general theory of creep in pressure vessels was developed by Bhatnagar and Arya (1973) and applied to the 

solution of a specific problem using Norton’s creep law. Steady-state creep analysis of thick-walled spherical 

pressure vessels with varying creep properties has been presented by You  and Ou (2008). Stresses in a spherical 

pressure vessels undergoing creep and dimensional changes has been presented by Miller (1995). Analytical and 

numerical analysis for the Functionally Graded thick sphere under combined pressure and temperature loading has 

been presented by Bayat et al (2012). In all these studies the strains are assumed to be infinitesimal and the 

deformation is referred with respect to original dimensions of the sphere.  

The excellent properties of metal matrix composites (MMCs) like high specific strength and stiffness, and high 

temperature stability make them suitable choice for applications involving high pressure and temperature (Harris, 

1999). Therefore, it was decided to investigate the secondary creep in a sphere made of Al- SiC composite and 

subjected to internal and external pressure and exposed to uniform temperature field. A mathematical model has 

been developed to describe the secondary stage creep behavior of the functionally graded sphere. The model 

developed is used to investigate the effect of different pressure ratios on the steady state creep in a thick-walled 

functionally graded spherical vessel. 

The content of silicon carbide in Al matrix has been assumed to vary linearly, with maximum amount at the inner 

radius and minimum at the outer radius of spherical vessel. A mathematical model has been developed and used to 

analyze the effect of varying the radial distribution of SiC on the steady state creep response of sphere.  

2. Creep Analysis and Mathematical Solution  

For aluminium matrix composites undergoing secondary stage creep, the relation between effective strain rate ( e ) 

and effective stress (e) can be described by the well-known threshold stress (o) based creep law (Singh and Gupta, 

2011) and is given by, 

𝜀𝑒̇ = {𝑀(𝑟)(𝜎𝑒 − 𝜎0(𝑟))}
𝑛

                                                                                                   (1) 
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In the present study, the values of M and σ0 have been  obtained from following regression equations developed from 

experimental data of Pandey et al (1992). The developed regression equations are given below, 

             𝑀(𝑟) = 0.0287611 −
0.00879

𝑃
−

14.02666

𝑇
−

0.032236    

𝑉(𝑟)
                                              (2) 

                                         

𝜎𝑜(𝑟) = −0.084𝑃 − 0.0232𝑇 + 1.1853(𝑉(𝑟)) + 22.207                                 (3) 

             

Where P, V(r), T, M(r) and o(r) are respectively the particle size, particle content, temperature, creep parameter and 

threshold stress at any radius (r) of the FGM spherical pressure vessels. In the present work particle size is assumed 

as 1.7 μm while operating temperature is kept as 623K. The reinforcement content i.e. silicon carbide particle (SiCp), 

in the sphere is assumed to vary linearly from the inner radius (a) to the outer radius (b). As a result, creep parameters 

will vary with the radius. The variation of SiCp is described by following equation (Singh and Gupta, 2011) 

Particle content  𝑉(𝑟) = 𝑉𝑚𝑎𝑥 −
(𝑟−𝑎)

(𝑏−𝑎)
(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)                                             (4) 

Where, Vmax  and Vmin  are respectively the maximum and minimum  SiCp, at the inner and outer radii. 

The average particle content (Vavg) in spherical vessel can be expressed as, 

  𝑉𝑎𝑣𝑔 =
∫ 2𝜋𝑟𝑙.𝑉(𝑟)𝑑𝑟

𝑏
𝑎

𝜋(𝑏2−𝑎2)𝑙
                                                                                  (5)                                                             

Substituting the value of particle content, V(r), from Eqn. (4) into Eqn. (5) and integrating the resulting equation, we 

get, 

𝑉𝑚𝑖𝑛 =
3𝑉𝑎𝑣𝑔(1−²)(1−)−𝑉𝑚𝑎𝑥(1−3²+23)

(2−3+3)
                                                     (6) 

Where,   is the ratio of inner to outer radius (i.e. a/b) of spherical vessel. 

Thus for a given FG sphere containing particle gradient both the creep parameters will be function of radius. The 

value of M(r) and σo (r) at any radius could be estimated by substituting the reinforcement content V(r) from equation 

(4) in into equation (2) and (3). 

Let us consider a thick-walled, spherical vessel made of functionally graded Al-SiCp composite. The vessel is 

assumed to have inner and outer radii as a and b respectively and is subjected to both internal pressure p and external 

pressure q. 

The geometric relationships between radial and circumferential strain rates and radial displacement rate are 
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𝜀𝑟̇ =
𝑑𝑥̇𝑟

𝑑𝑟
                                                                                  (7) 

𝜀𝜃̇ =
𝑥̇𝑟

𝑟
                                                                       (8) 

Where, 𝜀̇𝑟 and 𝜀𝜃̇  are respectively radial and circumferential strain rates, 𝑥̇𝑟 (=
𝑑𝑥

𝑑𝑡
)  is the radial displacement rate 

and 𝑥 is the radial displacement. 

Eliminating 𝑥𝑟̇, from Eqns. (7) and (8) the deformation compatibility equation is obtained as, 

𝑟
𝑑𝜀̇𝜃

𝑑𝑟
= (𝜀𝑟̇ − 𝜀𝑧̇)                                                                            (9) 

Considering the equilibrium of forces on an element of spherical vessel along the radial direction, we get the 

equilibrium equation as below, 

𝑟

2

𝑑𝜎𝑟

𝑑𝑟
= (𝜎𝑧 − 𝜎𝑟)                                                                         (10) 

Where,  𝜎𝜃  and 𝜎𝑟 are respectively the circumferential and radial stresses. 

Since the material of the sphere is assumed to be incompressible, therefore, 

𝜀𝑟̇ +  𝜀𝜃̇ +  𝜀𝑧̇ = 0                                                                 (11) 

Where, 𝜀𝑧̇ is the axial strain rate. 

The steady state creep deformations in thick-walled spherical pressure vessels are spherically symmetric i.e. 𝜎𝜃 =

𝜎𝑧, thus the constitutive equations (Singh and Gupta, 2011) for creep along the principal direction r,  and z can be 

written as below, 

𝜀𝑟̇ =
𝜀̇𝑒

𝜎𝑒
(𝜎𝑟 − 𝜎𝜃)                                                                               (12) 

𝜀𝑧̇ =
𝜀̇𝑒

2𝜎𝑒
(𝜎𝑧 − 𝜎𝑟)                                                                                     (13) 

Where  𝜀𝑒̇ is the effective strain rate, 𝜎𝑒 is the effective stress respectively. 

From Eqs. (12) and (13), the relationship between the radial and axial strain rates can be obtained as, 

𝜀𝑟̇ = −2𝜀𝑧̇                                                                                (14) 

Substituting Eqn. (14), into Eqn. (9), the deformation compatibility becomes, 
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𝑑𝜀̇𝑧

𝜀̇𝑧
= −3

𝑑𝑟

𝑟
                                                                                (15) 

The integration of Eqn. (15), gives the axial strain rate as, 

𝜀𝑧̇ =
𝐴1

𝑟3
                                                                                                       (16) 

Where, A1 is constant of Integration. 

The effective stress in thick-walled spherical vessels subjected to internal pressure is assumed to be expressed by 

von-Mises equation (Singh and Gupta, 2011), 

  𝜎𝑒 = (𝜎𝑧 − 𝜎𝑟)                                                                    (17) 

Using Eqn. (17) into Eqn. (13), we get, 

𝜀𝑒̇ = 2𝜀𝑧̇ =
2𝐴1

𝑟3
                                                                               (18) 

Using Eqn. (4) into above Eqn. (18), we get, 

𝜎𝑒 =
(2𝐴1)

1
𝑛

𝑟3/𝑛𝑀(𝑟)
+  𝜎𝑜(𝑟)                                                        (19) 

Using Eqn. (17) into above Eqn. (19), we get, 

𝜎𝑧 − 𝜎𝑟 =
𝐴2(𝑟)

𝑟
3
𝑛

+ 𝜎𝑜(𝑟)                                                        (20) 

Where 𝐴2(𝑟) = [
(2𝐴1)

1
𝑛

𝑀(𝑟)
] 

Substituting equilibrium Eqn. (10) into above equation and integrating the resulting equation between limits a to r, 

we get, 

𝜎𝑟 = 2 ∫
𝐴2(𝑟)

𝑟
(𝑛+3)

𝑛

𝑑𝑟
𝑟

𝑎
+ 2 ∫

𝜎𝑜(𝑟)

𝑟
𝑑𝑟

𝑟

𝑎
+ 𝐴3                                (21) 

Where, A3 is constant of integration. 

The following boundary conditions are assumed for the spherical vessel, 

(i). 𝑎𝑡 𝑟 = 𝑎, 𝜎𝑟 = −𝑝                                                          (22) 

(ii). 𝑎𝑡 𝑟 = 𝑏, 𝜎𝑟 = −𝑞                                                                (23) 
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Eqn. (21) may be solved between limits a and b and under the enforced boundary conditions given in Eqs. (22) and 

(23) to get the value of ‘A1’ as 

𝐴1 =
1

2
[

𝑝−𝑞−2𝐴4

2𝐴5
]

𝑛

                                                                    (24) 

Where 𝐴4 = ∫
𝜎0(𝑟)

𝑟
𝑑𝑟

𝑏

𝑎
and 𝐴5 = ∫

1

𝑟(𝑛+3) 𝑛⁄ 𝑀(𝑟)
𝑑𝑟

𝑏

𝑎
 

Applying boundary conditions in Eqn. (21), the radial stress is obtained as, 

𝜎𝑟 = 2 ∫
𝐴2(𝑟)

𝑟
(𝑛+3)

𝑛

𝑑𝑟
𝑟

𝑎
+ 2 ∫

𝜎𝑜(𝑟)

𝑟
𝑑𝑟

𝑟

𝑎
− 𝑝                                (25) 

A computer program has been developed to calculate the steady state creep response of the FG spherical vessel for 

various combinations of size and content of the reinforcement, and operating temperature. For the purpose of 

numerical computation, the inner and outer radii of the spherical vessel are taken 500 mm and 800 mm respectively, 

and the internal pressure is assumed to be 100 MPa and external pressure varies as 50 MPa, 33.33 MPa, 25  MPa 

and 20 MPa  so that ratio of p/q = 2, 3, 4 and 5. The radial stress at different radial locations of the sphere is calculated 

respectively from Eqs. (25). The creep parameters M(r) and o (r), required during the computation process, are 

estimated respectively from Eqs. (2) and (3). 

 

3. Results and Discussions 

On the basis of mathematical analysis, numerical calculations have been carried out to obtain the secondary stage 

creep behaviour of functionally graded spherical pressure vessels. The results have been obtained for different 

pressure ratios in FG spheres. The internal pressure is taken as 100 MPa, however external pressure is varied to 

obtain pressure ratio as 2, 3, 4 and 5. 

3.1 : Variation of Particle Content and Creep Parameters. 

The distribution of SiC particles in spherical vessel is linear with maximum particle content is 30 vol% at inner 

radius. The content of reinforcement is assumed to decrease linearly along the radial distance. The average particle 

content is kept as 20 vol%. 

http://www.jetir.org/


© 2018 JETIR April 2018, Volume 5, Issue 4                                       www.jetir.org  (ISSN-2349-5162)  

 

JETIR1804365 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 840 
 

The threshold stress will reduce linearly (Fig.1) with maximum value at in a radius and minimum value at outer 

radius of spherical vessel. The threshold stress is higher at locations have greater density of silicon carbide particles. 

The variation of 0
 
become stepper with increase in particle gradient in functionally graded spherical vessel.  
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                                       Fig. 1: Variation of Threshold stress. 
 

On the other hand the value of creep parameter ‘M’ will increase with increase in radial distance (Fig.2). The increase 

observed in the value of ‘M’ may be due to decrease in particle content at outer regions. 
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Fig. 2: Variation of Creep parameter ‘M’. 
 

 

 

3.2 Variation of Radial and Axial Stresses 

To observe the effect of pressure ratio on radial and axial stresses in a thick walled spherical vessel the pressure ratio 

is kept at 2, 3, 4 and 5. The compressive value of radial stress decreases parabolically from inner radius to outer 

radius due to imposed boundary conditions, Fig. 3. The compressive value of 𝜎𝑟 will reduce as pressure ratio 

increases from 2 to 5. 
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Fig. 3: Variation of Radial Stress. 

 

 

 

The tangential stress 𝜎𝜃 and axial stress 𝜎𝑧 remains equal due to spherical symmetry and observed to increase with 

radius. Further value axial stress remains compressive at inner and outer radius for pressure ratio 2. On the other 

hand, the stress become tensile at middle portion as pressure ratio is increased from 2 to 3. Further increase in pressure 

ratio from 4 to 5) leads to shift in tensile axial stress near inner region of sphere. Further the distribution of axial 

stress remain parabolic in nature Fig.4. 
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Fig. 4: Variation of Axial Stress.  

 

4. Conclusions 

The present study has led to following conclusions, 

1) The radial stress in spherical pressure vessel decreases throughout with the increase in pressure ratio. The radial 

stress remains zero at the inner radius due to imposed boundary condition. 

2) The axial stress is compressive near the inner and outer radius of spherical pressure vessel for pressure ratio 2.  

3) The axial stress becomes tensile with increase in pressure ratio 3, 4 and 5.  
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